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Abstract 

I describe a new method for the automatic 
alignment of two or more Minimal Recursion 
Semantics (MRS) structures and deterministi-
cally scoring this alignment. The novel contri-
bution is a technique for representing MRS 
structures in a matrix suitable for analysis via 
singular value decomposition (SVD). The SVD 
computation determines the optimal least-
squares rotation—in a high-dimensional 
space—of the MRS structures relative to each 
other. Thus reduced, conventional vector space 
model analysis of MRSes is enabled. The gen-
eral task of aligning arbitrary MRSes has im-
portant applications in machine translation, 
treebank bootstrapping for low-resource lan-
guages, and evaluating semantic mappings.  

1 Introduction 

Manipulating structures in the format of Minimal Recur-
sion Semantics (MRS, Copestake et al. 2005) is a critical 
task in state-of-the art grammar engineering and compu-
tational semantics. In addition to serving as the corner-
stone semantic formalism for the DELPH-IN consortium, 
MRS has also been adapted in non-HPSG environments, 
such as CCG. 

This paper details ongoing work on a long-term project 
for developing bi-directional Thai-English machine trans-
lation using a system of semantic transfer between 
HPSG-based computational grammars. The current re-
search hoped to demonstrate the transfer prototype. How-
ever, one stringent requirement was that this research 
include quantitative evaluation. Such measurements are 
non-trivial, and there are no unsupervised methods for 
measuring MRS similarity. 

This paper is structured as follows. First I describe the 
test corpus, originally intended for research in bilingual 
semantic transfer, but also useful for illustrating a new, 
automatic method for the deterministic alignment of arbi-
trary, disjoint MRSes. The new method is described in 
the following section. Next, the transfer problem is ad-
dressed. I detail some test procedures in Section 5, and 
then use the new alignment technique is used to confirm 
the efficacy of  a few simple improvements.  

. 

2 Test corpus and tools 

To test semantic mapping and MRS isomorphism, a cor-
pus of MRS pairings was developed. A set of 187 Thai 
sentences, each with a high-quality, human-authored 
English translation, was extracted from the database of 
the thai-language.com website, according to the criteria 
of obtaining one or more derivations when parsed by both 
of the grammars described below. The bitext sentence 
pairs which were parsed to obtain the semantic corpus are 
listed at the following link: 

http://www.computational-semantics.com/ling575/sents.txt 

DELPH-IN grammars and tools were used to parse the 
sentences. For the English sentence, MRS representations 
were produced by the English Resource Grammar (ERG, 
Flickinger 2000).1 A small grammar of Thai, originally 
produced with the Grammar Matrix toolkit (Bender et al. 
2002), and extended to handle a few additional linguistic 
phenomena, was used for Thai. The 187 simple sentences 
in the test corpus exercise the full competence of this 
small grammar. Naturally, the paired English translations 
of these sentences are not challenging for the ERG. The 
entire semantic corpus can be viewed at the following 
link. Also provided is a complete set of machine-readable 
text files with details on all the MRSes studied. Each 
‘mrs-dump’ file contains data for all of the (one or more) 
MRSes generated from a single Thai or English sentence. 

http://www.computational-semantics.com/ling575/index.html 
http://www.computational-semantics.com/ling575/mrs-corpus 

Note the flattened format of the MRS-corpus files, where 
variables which host properties seem to acquire the status 
of roles. The format was designed this way as a prelude 
to processing the MRS via the SVD method described in 
Section 4, but I found the compact and consistent form to 
be otherwise quite convenient. It also facilitates ‘diff-
style’ comparison of MRSes somewhat, although typical-
ly the so-called bag nature of the primary MRS elements 
(namely, that they are in formally unordered sets) renders 
this practice futile. 

DELPH-IN generally advocates native-orthography pred-
icate naming, but to simplify this initial research, a ver-

                                                 
1 For both grammars, the Sem-I (‘semantic interface’) and VPM 
(‘variable property mapping’) modules were activated. These 
post-processors allow the grammar author to fine-tune and con-
trol the structure of the information published to MRS. 



sion of the Thai grammar which uses English-language 
semantic predicate names was used. Minor bugs and 
issues identified in the Thai grammar during corpus prep-
aration work were repaired (most notably in the VPM 
grammar, which was revamped). 

The agree grammar engineering system (Slayden 2010) 
was used because it is able to load both grammars in the 
same process and coordinate their activities, simplifying 
experimentation. 

3 Parse Selection 

When first addressing the semantic corpus described in 
the previous section, the most immediate and pressing 
problem is that, unlike with the ERG, which has a well-
developed stochastic parse-selection model, there is no 
such model available for Thai. As shown at the link 
above, there can be multiple readings for the English or 
Thai sentence, or both. 

At first I enabled the English MaxEnt model and worked 
only with the top-ranked English sentence, but soon I 
discovered that often the reading with the highest score is 
not the desired one, or it represents a meaning which lies 
outside the competency of the Thai grammar. This type 
of problem was judged to be not in the scope of this pro-
ject because it is not the job of a semantic mapping to 
repair intended variation. 

Accordingly, I restored the exhaustive set of derivations 
for both Thai and English, and proceeded to seek a meth-
od for automatically forming a single, best, translation 
pairing from all of the available readings. This led to the 
successful development of the SVD technique, the main 
contribution of this paper, which is described in the next 
section.  

4 Best alignment of arbitrary MRSes 

In the process of seeking a sound evaluation paradigm for 
use in an extended study of declarative semantic transfer, 
I found that no automatic methods were mentioned in the 
MRS literature. Methods for gathering atomic ‘triples’ 
from MRSes are documented (Driden and Oepen, 2011), 
and these lists can be compared, but human interaction is 
required to set the expected order between the lists. 

Formally, the elements in an MRS are taken as unor-
dered, and this fact makes it difficult to establish the for-
mal rigor of unsupervised methods. For the Thai-English 
translation case, this follows intuition as well, since as-
serting the correspondence of semantic entities which 
originate from different grammars seems perilous. Of the 
MRS isomorphism that I am aware of, none makes a 
claim of formal rigor. Ultimately, establish correspond-
ences between elements requires manual assistance.  

The problem dampens productivity in many areas. Sto-
chastic training requires a large number of training in-
stances of course, so the lack of a method for the fully-
automatic alignment of MRSes is a major obstacle for 
bootstrapping with existing semantic resources. Consider 
the Redwoods Treebank, a large collection of annotated 
syntactic derivations for the ERG. Given accurate transla-
tion pairs, the method of unsupervised MRS selection 

shown here can isolate the intended semantic reading—as 
produced by the low-resource grammar itself—by check-
ing semantic isomorphism against the top-ranked ERG 
semantics for the surface translation. 

4.1 Singular Value Decomposition 

In this section I describe a method for organizing the 
structure of an MRS within a two-dimensional matrix so 
that the mathematical technique of Singular Value De-
composition (SVD) can be applied. Intuitively, by exam-
ining co-occurring patterns in the input, the SVD reduc-
tion of a matrix arranges its rows and columns such that 
‘denser’ portions are relatively distant from each other. 
The matrix form of the MRS is non-lossy, so the SVD 
analysis can capitalize on all its entity co-occurrences, 
and can model arbitrary substructure, coreferencing, and 
synthetic properties (e.g., VPM). 

4.2 SVD Theory 

SVD is two-mode factor analysis, allowing it to manipu-
late an ݉ × ݊  content matrix. By representing column 
vectors in a space where intersecting transitive co-
occurrence relations constitute a cline of choosable di-
mensionality, the SVD simultaneously provides noise 
attenuation (smoothing), redundancy detection, and a 
similarity retrieval metric (Kontostathis and Pottenger, 
2002). The singular value decomposition is defined as  ܣ௠×௡ = ܷ௠×ௗΣௗ×ௗ( ௡ܸ×ௗ)் 

where ݀ = min(݉, ݊). The power of the decomposition 
exists in the fact that, as shown in Golub and van Loan 
(1996, 72-73), for any ݇ , the maximum-likelihood 2-
norm (least-squares) approximation of rank-deficient ܣ௠×௞ is given by ܣመ௠×௞ = ܷ௠×௞Σ௞×௞( ௡ܸ×௞)் 

This guarantee means that the ݇ -dimensional space is 
usefully rotated so as to align the ݇ axes in the ݇ direc-
tions of greatest variation. The value for ݇ is chosen em-
pirically. 

4.3 MRS adaptation 

The challenge in adapting the SVD technique to the task 
of finding an optimal alignment between arbitrary graphs 
is in determining how to encode the graph in the two-
dimensional matrix in a manner that preserves the transi-
tive co-occurrence chains manifested by graph reen-
trancies. In the case of MRS, these co-occurrences are the 
variables, equivalence classes which freely span across 
MRS relations, establishing the semantic structure. Con-
ventionally, the lossless representation of a directed 
graph seems to require a structure of dimensionality 
greater than 2. 

The solution lies in recognizing that SVD’s ability to 
evaluate transitive co-occurrence can be used to actually 
model the portion of the original MRS structure which 
exceeds the modeling power of a two-dimensional ma-
trix—namely, the graph-reentrancies. Individual columns 
in the SVD typically represent distinct, unrelated instanc-
es—for example, the “documents” in a term-by-



document application. To model more complex struc-
tures, however, multiple columns can be designated to a 
single instance, and then logically joined by encoding a 
specific aspect of their internal structure in specially-
designated rows. This is the approach to encoding MRS 
for SVD. Rather than assigning one SVD column to each 
relation, each relation spans several, and special SVD 
rows are dedicated to tying together the bundle. The nov-
el idea is that the special role rows allow the important 
in-relation co-occurrence information to be preserved in 
the MRS-SVD encoding. 

4.4 Layout 

The details of the encoding is as follows. Tuples of 〈ܴܵܯ, ,݊݋݅ݐ݈ܽ݁ݎ  form the columns. Thus a single 〈݈݁݋ݎ
relation (from either MRS) is spread across multiple SVD 
columns, one for each of its role positions (LBL, ARG0, 
RSTR, etc.).2  

One special row is also dedicated to each role in the un-
ion of all roles present in the two inputs. The SVD array 
is marked with ‘1’ where these intersect. After these spe-
cial rows, there is one row for each variable, this time a 
union across both MRSes, without conflation. Singleton 
variable occurrences do not affect the calculation and 
need not be included. Array positions where variables 
occur are marked in the obvious way. An example MRS-
SVD layout is shown at the following link. The conven-
tional MRS notation for the two MRSes which are in-
stalled in the array is shown at the bottom of the image. 

http://www.computational-semantics.com/ling575/mrs-svd.png 

Recall that 〈ܴܵܯ, ,݊݋݅ݐ݈ܽ݁ݎ 〈݈݁݋ݎ  tuples form the col-
umns of the SVD input matrix. In accordance with SVD 
convention as used in other NLP tasks, we compute only 
the ‘right singular vectors,’ ்ܸ, and the columns desig-
nate our entities of primary interest. Therefore, it is for 
these tuples, and not MRS relations, that we will obtain 
the least-squares alignment, so the alignment will be 
computed without regard for the relations to which the 〈݊݋݅ݐ݈ܽ݁ݎ,  .tuples belong 〈݈݁݋ݎ

For the purposes of evaluating MRS isomorphism in the 
current research, this is not an issue, since the structure 
implied by the SVD result is never destined to be inter-
preted as a valid MRS. However, several schemes (such 
as clustering) for deriving a best relation alignment from 
the present result can be imagined. None were investigat-
ed, so these are left for future research.  

4.5 Interpretation 

Recalling the SVD definition above. In this application, ݉ is the number of the distinct top-level roles across both 
MRSes plus the number of distinct, non-singleton varia-
bles across both MRSes, and ݊ is number of relation-role 
tuples across both MRSes. According to this configura-
tion, the left singular vectors ܷ indicate the coordinates 
of each variable in the reduced ݇-space, the right singular 

                                                 
2 The ordering of the rows and columns in the SVD matrix is 
irrelevant. Indeed, it is the task of the SVD to determine the 
optimal ݇-dimensional rotation of the input instances. 

vectors ܸ  give the coordinates of each relation (Σ  is 
formed by arranging the singular values–which are the 
lengths of the principal semiaxes of the hyperelliptic 
projection of ܣ (Golub and Loan, 1996, 71)—along the 
main diagonal of an otherwise empty ݀ × ݀ matrix). 

Although results are still pending at the deadline for this 
report, it seems likely that one can take the value of the 
first singular value as an overall measure of the quality of 
the alignment. 

An interesting property of SVD is that the (very) expen-
sive reduction step can be performed prior to committing 
to the desired dimensionality; the result matrices simulta-
neously encode the optimal rotations for all ݇. The output 
matrices for a particular ݇ value is trivially computed. At 
this point, one proceeds as if the two MRS were a high-
dimensional vector space model (VSM)—with the caveat 
that the dimensions should not be considered interpreta-
ble (Schütze 1992). It is a simple matter to pair up col-
umns according to closest cosine (vector) distance, re-
membering which columns originated from which 〈ܴܵܯ, ,݊݋݅ݐ݈ܽ݁ݎ  tuple. This is the basic procedure 〈݈݁݋ݎ
used to evaluate baseline statistics for the Thai-English 
corpus. The details are given in the next section. 

5 Test methodology 

The SVD method of MRS alignment allows the align-
ment baseline of the raw corpus to be computed. These 
figures are shown. As noted in Section 4.4, the SVD pro-
vides the optimal set of tuple parings between each  〈ܴܵܯ, ,݊݋݅ݐ݈ܽ݁ݎ  tuple in the source MRS and the 〈݈݁݋ݎ
target MRS. Important aspects of the MRS formalism—
notably, for example, and as mentioned above, the bind-
ing of a role to its relation—are not respected during this 
process. Also not enforced in the current implementation 
is that a target 〈݊݋݅ݐ݈ܽ݁ݎ,  tuple not be aligned with 〈݈݁݋ݎ
more than one source element. Effecting these require-
ments, and others, can be achieved with suitable adjust-
ments to the VSM analysis stage which follows the SVD 
computation.  

5.1 Evaluating role names and atomic types 

Given an alignment produced by the SVD technique 
described above, it is trivial to evaluate precision and 
recall for semantic role3 names, as well as constant or 
‘atomic’ types. They do not interact with other parts of 
the MRS and can be counted in the obvious way.4 In the 
current implementation, these results make no adjustment 
for the fact that more than one source tuple may be as-
signed to the same target tuple. 

                                                 
3 Arbitrary TFS-style (typed feature structure) substructure be-
low MRS semantic variables can be processed with the SVD 
scheme, so my use of “roles” should be understood to include 
the features in such “feature/value” pairs as well. 

4 I believe the MRS formalism forbids (e.g. TFS-effected) co-
referencing between non-variable nodes, and the SVD layout 
plan outlined here assumes this. 



5.2 Variables 

If one were concerned with only the ‘sub-type’ of the 
semantic variables (e.g. h, x, u, i...), then, just like the 
role names and atomic types, evaluating the precision and 
recall of the alignment would be trivial. In fact, I report 
variable sub-type accuracy figures.5 Unfortunately, how-
ever, even given an exhaustive node alignment from the 
source MRS to the target MRS such as the SVD tech-
nique provides, it is challenging to evaluate the success 
of mapping the variables. This is not simply because the 
variable numeric indices may be assigned differently in 
two logically identical structures, which is relatively 
simple to address. Rather, it is  because the mapping 
introduces diverse cases for which interpretative deci-
sions must be made.  

For example, in the current demonstration, the source 
MRS will get full credit for a variable of the correct type 
that it places in the target when none of the source’s other 
alignments contain that variable in the target. However, if 
the target has unmapped positions, now how should a 
repetition of that variable (that is invisible to the source) 
now be handled? 

Another rare case is where the target has fewer variables 
than the source (and in fact, fewer 〈݊݋݅ݐ݈ܽ݁ݎ, -tu 〈݈݁݋ݎ
ples, which necessarily results in some target nodes being 
targeted by multiple source nodes). In this case, the 
source can (falsely?) be marked correct by re-using a 
target variable—if it happens to have the correct signa-
ture for multiple source variables. 

In the current design, variables are also evaluated global-
ly over an MRS, as opposed to by 〈݊݋݅ݐ݈ܽ݁ݎ,  .tuple 〈݈݁݋ݎ
This means each variable in the MRS counts as only one 
opportunity to get all of its alignments (specifically, those 
that are visible to the source) correct. In this case, “cor-
rect” means that the target must the same variable at all 
the positions, as mapped through the alignment, where 
the source MRS does. (This more subtle analysis also 
requires that the variable ‘sub-type’ be correct at all of 
the mapped positions) Thus, “variable precision” is the 
number of wholly-correct variable signatures relative to 
the number of source variables, whereas “variable recall” 
is relative to the number of target variables.  

5.3 Transfer 

Work on transfer is still ongoing, in particular depending 
upon the completion of the unsupervised cross-language 
MRS alignment work which is described here. Fortunate-
ly, as demonstrated in this report, that work is essentially 
complete and has surpassed all expectations for its suc-
cess. 

6 Evaluation and results 

Prior to using the SVD to identity the most isomorphic 
MRS from a list of candidates, I evaluated precision and 
recall for only and all of the translation pairs which gen-

                                                 
5 Unlike as with evaluating variables proper, sub-type accuracy 
is per 〈݊݋݅ݐ݈ܽ݁ݎ,  .tuple (same as role names) 〈݈݁݋ݎ

erated—for both languages—just one derivation. This 
was the case for 39 of the 187 instances. A raw dump of 
the output from this run can be found here: 

http://www.computational-semantics.com/ling575/1th-1en.html 

This file, though perhaps opaque, summarizes the bulk of 
my work on this project. In each delimited section, an 
independent alignment is computed for both the Thai-to-
English and English-to-Thai directions, with the 〈݊݋݅ݐ݈ܽ݁ݎ,  match-ups shown in detail. Because the 〈݈݁݋ݎ
SVD is computationally expensive but the resulting VSM 
supports the extraction of diverse work products, it makes 
sense to compute both mappings at the same time. 

The high-dimensional Euclidian distance between the 
source and target—according to the alignment—is also 
given, but this has not proved useful yet. More predictive 
is the first singular value computed by the SVD. It seems 
to be a measure of the alignment quality. The minimum 
value of 2.54832 occurs with item #219431 “I’m eating,” 
which has the following poor evaluation: 
 
first 5 singular values { 2.54832, 2.26775, 2.00000, 2.00000, 1.76350 } 
role accuracy:             9 / 11  = 0.8182   COG-ST/ARG1 
const-type precision:      2 / 4   = 0.5000    
const-type recall:         2 / 2   = 1.0000    
const-value accuracy:      1 / 2   = 0.5000   _eat_v_1/pron_rel 
var-subtype accuracy:      2 / 8   = 0.2500    
variable precision:        1 / 4   = 0.2500    
variable recall:           1 / 8   = 0.1250    

Compare this to item #219609, “He bought it and he 
visited his friend.” where ݓሾ0ሿ= 4.87846: 
first 5 singular values: { 4.87846, 4.87484, 4.79583, 3.34596, 3.31827 } 
role accuracy:            54 / 60  = 0.9000   SPECI/TENSE, COG-ST/ARG1, L-
HNDL/INDEX, R-HNDL/NUM, C-ARG/LTOP 
const-type precision:     18 / 19  = 0.9474    
const-type recall:        18 / 19  = 0.9474    
const-value accuracy:      7 / 19  = 0.3684   m-or-f/m, +/past, ex-
ist_q_rel/pron_rel, _buy_v_1/pron_rel, _and_c/pron_rel, 
_visit_v_1/pron_rel, _friend_n_1/pron_rel 
var-subtype accuracy:     17 / 35  = 0.4857    
variable precision:        8 / 24  = 0.3333    
variable recall:           8 / 35  = 0.2286    

Also shown in the run output file (and seen above anno-
tating certain lines) are the names of items that failed to 
map. In general, the alignment of MRS variables evalu-
ates poorly, but this could be an artifact of the all-or-
nothing approach to the variable signature which is de-
tailed in Section 5.2. This is even more strongly suggest-
ed when noting that the overall accuracy of just the vari-
able sub-type , 0.76308, is much higher than the variable 
precision and recall scores of 0.42229 and 0.41286. 

 I computed the overall evaluation averages and these are 
shown below. These results wildly surpass my expecta-
tions for the technique. It is possible to see this and be-
come excited just from the alignment maps which are 
shown, and which first hinted at the success of this tech-
nique. For example, in the 1en-1th output file, the rela-
tions of the source (left) side always appear in ascending 
order, but there is often considerable reshuffling visible 
in the index numbers shown for the target side. The role 
accuracy in particular shows that, with neither a priori 
knowledge of the input structures, nor manual supervi-
sion, the singular value decomposition is able to automat-
ically obtain quality MRS alignments. 
 



w[0] min: 2.54832 (219431)  max: 4.87846 (219609) 
Averages over 39 single-alignment instances 
 role accuracy:             0.94197 
 const-type precision:      0.96088 
 const-type recall:         0.98605 
 const-value accuracy:      0.32646 
 var-subtype accuracy:      0.76308 
 variable precision:        0.42229 
 variable recall:           0.41286 

7 Summary 

I presented a new technique for the unsupervised align-
ment of MRSes, including their variable properties or 
other arbitrary substructure. The method is deterministic 
and theoretically sound. Evaluation of this preliminary 
work exceeds expectations, with role and constant evalu-
ations near perfect. There is much promise in this ap-
proach to MRS isomorphism. 

This work was conducted in the context of research into 
bidirectional Thai-English analytical machine translation. 
As noted, a key obstacle in this effort has been the lack of 
a probabilistic parse selection model for Thai. Future 
work will examine using the technique described here to 
bootstrap a forest of Thai training derivations based on 
MRS isomorphism between the English Resource 
Grammar and the Thai grammar, when parsing sentence 
translation pairs. 

References 

Bender, E. M., Flickinger, D., & Oepen, S. (2002). The 
grammar matrix: An open-source starter-kit for the 
rapid development of cross-linguistically consistent 
broad-coverage precision grammars. In Proceed-
ings of the 2002 workshop on Grammar engineer-
ing and evaluation-Volume 15 (pp. 1-7). Associa-
tion for Computational Linguistics. 

Copestake, A., Flickinger, D., Pollard, C., & Sag, I. A. 
(2005). Minimal recursion semantics: An introduc-
tion. Research on Language and Computation, 3(2-
3), 281-332. 

Dridan, R., & Oepen, S. (2011). Parser evaluation using 
elementary dependency matching. In Proceedings 
of the 12th International Conference on Parsing 
Technologies (pp. 225-230). Association for Com-
putational Linguistics. 

Flickinger, D. (2000). On building a more efficient 
grammar by exploiting types. Natural Language 
Engineering, 6(1), 15-28. 

Fujita, S., Bond, F., Oepen, S., & Tanaka, T. (2010). 
Exploiting semantic information for HPSG parse 
selection. Research on Language and Computa-
tion, 8(1), 1-22. 

Gene H. Golub and Charles F. Van Loan. (1996). Matrix 
computations (3rd ed.). Johns Hopkins University 
Press, Baltimore, MD, USA. 

April Kontostathis and William M. Pottenger. (2002). 
Transitivity and the co-occurrence relation in LSI. 
Technical Report LU-CSE-02-005, Lehigh Univer-
sity. 

Oepen, S., & Lønning, J. T. (2006). Discriminant-based 
MRS banking. In Proceedings of the 5th Interna-
tional Conference on Language Resources and 
Evaluation (LREC 2006). 

Hinrich Schütze. (1992). Dimensions of meaning. In 
Proceedings of Supercomputing. 

Slayden, G. (2010) Array TFS storage for unification 
grammars. University of Washington Master’s 
Thesis, 2010. 


